
Package: nbody (via r-universe)
August 21, 2024

Type Package

Title Gravitational N-Body Simulation

Version 1.41

Description Run simple direct gravitational N-body simulations. The
package can access different external N-body simulators (e.g.
GADGET-4 by Springel et al. (2021)
<doi:10.48550/arXiv.2010.03567>), but also has a simple
built-in simulator. This default simulator uses a variable
block time step and lets the user choose between a range of
integrators, including 4th and 6th order integrators for
high-accuracy simulations. Basic top-hat smoothing is available
as an option. The code also allows the definition of background
particles that are fixed or in uniform motion, not subject to
acceleration by other particles.

Depends R (>= 4.0.0)

Imports magicaxis, Rcpp (>= 1.0.0)

LinkingTo Rcpp

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation yes

Author Danail Obreschkow [aut, cre]
(<https://orcid.org/0000-0002-1527-0762>)

Maintainer Danail Obreschkow <danail.obreschkow@gmail.com>

Date/Publication 2024-08-20 14:50:05 UTC

Repository https://obreschkow.r-universe.dev

RemoteUrl https://github.com/cran/nbody

RemoteRef HEAD

RemoteSha 461f1023504af40a08b1432fb59481f17ef69bf7

1

https://doi.org/10.48550/arXiv.2010.03567
https://orcid.org/0000-0002-1527-0762

2 .nbody.env

Contents
nbody-package . 2
.nbody.env . 2
default.code . 3
energy . 3
plot.simulation . 4
reset.cm . 6
run.simulation . 6
setup . 10

Index 12

nbody-package Gravitational N-Body Simulation

Description

Run simple direct gravitational N-body simulations. The package can access different external N-
body simulators (e.g. GADGET-4 by Springel et al., 2021), but also has a simple built-in simulator.
This default simulator uses a variable block time step and lets the user choose between a range of
integrators, including 4th and 6th order integrators for high-accuracy simulations. Basic top-hat
smoothing is available as an option. The code also allows the definition of background particles
that are fixed or in uniform motion, not subject to acceleration by other particles.

Author(s)

Danail Obreschkow <danail.obreschkow@gmail.com>

.nbody.env Package environment

Description

Environment used to store paths and options for external code.

Usage

.nbody.env

Format

An object of class environment of length 0.

Author(s)

Danail Obreschkow

default.code 3

See Also

default.code

default.code Set a default external simulation code

Description

Set a default external simulation code

Usage

default.code(code = NULL)

Arguments

code structured list specifying the default external simulation code used when calling
run.simulation. This list has exactly the same format as the sub-list ‘code‘
described in the documentation of run.simulation.

Value

Returns the current list ‘code‘. If no such last has been set and ‘default.code()‘ is called without
argument, an error is produced.

Author(s)

Danail Obreschkow

energy Mechanical energy of an N-body system

Description

Computes the instantaneous potential and kinetic energies of all particles in an N-body system.
Here, the potential energy of a particle i means the potential energy it has with all other particles
(sum_j -G*m[i]*[j]/rij). Hence the total potential energy of the system is half the sum of the indi-
vidual potential energies.

Usage

energy(m, x, v, rsmooth = 0, G = 6.67408e-11, cpp = TRUE)

4 plot.simulation

Arguments

m N-vector with the masses of the N particles. Negative masses are treated as
positive masses of same magnitude, since negative masses normally represent
positive background masses in the nbody package.

x N-by-3 matrix specifying the initial position in Cartesian coordinates

v N-by-3 matrix specifying the initial velocities

rsmooth top-hat smoothing radius.

G gravitational constant. The default is the measured value in SI units.

cpp logical flag. If TRUE (default), the computation is performed efficiently in C++.

Value

Returns a list with vector items Ekin, Epot, Emec=Ekin+Epot; and the associated total quantities
Ekin.tot, Epot.tot, Emec=Ekin+Epot.tot.

Author(s)

Danail Obreschkow

plot.simulation Visualize an N-body simulation

Description

Basic routine to visualise the result of an N-body simulation, projected onto a plane.

Usage

S3 method for class 'simulation'
plot(
x,
y,
units = 1,
index1 = 1,
index2 = 2,
xlim = NULL,
ylim = NULL,
center = c(0, 0, 0),
cex = 0.3,
pch = 20,
title = "",
asp = 1,
pty = "m",
col = "black",
alpha.orbits = 1,

plot.simulation 5

alpha.snapshots = 1,
lwd = 1,
show.orbits = TRUE,
show.snapshots = TRUE,
show.ics = TRUE,
show.fcs = TRUE,
...

)

Arguments

x is a simulation-object as produced by run.simulation

y deprecated argument included for consistency with generic plot function
units length unit in SI units
index1 index of the dimension plotted on the x-axis
index2 index of the dimension plotted on the y-axis
xlim 2-vector specifying the plotting range along the x-axis
ylim 2-vector specifying the plotting range along the y-axis
center 3-vector specifying the plotting center in the specified units
cex point size
pch point type
title title of plot
asp aspect ratio of x and y axes
pty character specifying the type of plot region to be used; "s" generates a square

plotting region and "m" generates the maximal plotting region.
col either (1) a single color, (2) a n-element vector of colors for each particle or (3)

a function(n,...) producing n colors, e.g. ’rainbow’
alpha.orbits opacity (0...1) of orbital lines.
alpha.snapshots

opacity (0...1) of snapshot points.
lwd line width of orbital lines.
show.orbits logical flag. If TRUE (default), the orbits are shown as straight lines between

snapshots.
show.snapshots logical flag. If TRUE (default), points are shown for each snapshot.
show.ics logical flag. If TRUE (default), the initial positions are highlighted.
show.fcs logical flag. If TRUE (default), the final positions are highlighted.
... additional parameters for plot

Value

None

Author(s)

Danail Obreschkow

6 run.simulation

reset.cm Move center of mass to the origin

Description

Routine, designed to reset the center of mass (CM) of the initial conditions (ICs) of an N-body
simulation. The CM position and velocity are both shifted to (0,0,0).

Usage

reset.cm(sim)

Arguments

sim list of m, x, v or list with a sublist "ics", made of m, x, v, where m = N-vector with
the masses of the N particles. Negative masses are treated as positive masses of
same magnitude, since negative masses normally represent positive background
masses in the nbody package.
x = N-by-3 matrix specifying the initial position in cartesian coordinates
v = N-by-3 matrix specifying the initial velocities

Value

Returns a structure of the same format as the input argument, but with re-centered positions and
velocities.

Author(s)

Danail Obreschkow

run.simulation Run a direct N-body simulation

Description

Run direct N-body simulations using an adaptive block timestep.

Usage

run.simulation(sim, measure.time = TRUE, verbose = TRUE)

run.simulation 7

Arguments

sim structured list of simulation settings, which must contain the following sublists:

ics is the sublist of initial conditions. It must contain the items:
m = N-vector with the masses of the N particles. Negative mass values are con-
sidered as positive masses belonging to a background field, which is not subject
to any forces. Therefore particles with negative mass will have a normal effect
on particles with positive masses, but they will not, themselves, be accelerated
by any other particle.
x = N-by-3 matrix specifying the initial position in Cartesian coordinates
v = N-by-3 matrix specifying the initial velocities

para is an optional sublist of optional simulation parameters. It contains the
items:
t.max = final simulation time in simulation units (see details). If not given, a
characteristic time is computed as t.max = 2*pi*sqrt(R^3/GM), where R is the
RMS radius and M is the total mass.
dt.max = maximum time step. If not given, no maximum time step is imposed,
meaning that the maximum time step is either equal to dt.out or the adaptive
time step, whichever is smaller.
dt.min = minimum time step used, unless a smaller time step is required to
save an output or to land precisely on the final time t.max. dt.out = output
time step, i.e. time step between successive snapshots in the output sublist re-
turned by run.simulation. If not given, dt.max=t.max/100 is assumed.
eta = accuracy parameter of adaptive time step. Smaller values lead to propor-
tionally smaller adaptive time steps. Typical values range between 0.001 and
0.1. If not given, a default value of 0.01 is assumed. To use fixed time steps, set
eta=1e99 and set a time step dt.max.
integrator = character string specifying the integrator to be used. Currently
implemented integrators are ’euler’ (1st order), ’leapfrog’ (2nd order), ’yoshida’
(4th order), ’yoshida6’ (6th order). If not given, ’leapfrog’ is the default integra-
tor.
rsmooth = optional smoothing radius. If not given, no smoothing is assumed.
afield = a function(x,t) of positions x (N-by-3 matrix) and time t (scalar),
specifying the external acceleration field. It must return an N-by-3 matrix. If
not given, no external field is assumed. If the external code "nbodyx" is used,
then afield should be a vector of the parameters p1, p2, ... for the external accel-
eration field of "nbodyx".
G = gravitational constant in simulation units (see details). If not given, the mea-
sured value in SI units is used.
box.size = scalar>=0. If 0, open boundary conditions are adopted. If >0, the
simulation is run in a cubic box of side length box.size with periodic boundary
conditions. In this case, the cubic box is contained in the interval [0,box.size)
in all three Cartesian coordinates, and all initial positions must be contained in
this interval. For periodic boundary conditions, the force between any two par-
ticles is always calculated along their shortest separation, which may cross 0-3
boundaries. The exception is GADGET-4, which also evaluates the forces from

8 run.simulation

the periodic repetitions.
include.bg = logical argument. If FALSE (default), only foreground particles,
i.e. particles with masses >=0, are contained in the output vectors x and v. If
TRUE, all particles are included.

code is an optional sublist to force the use of an external simulation code (see
details). It contains the items:
name = character string specifying the name of the code, currently available op-
tions are "R" (default), "nbodyx" (a simple, but fast N-body simulator in Fortran)
and "gadget4" (a powerful N-body+SPH simulator, not very adequate for small
direct N-body simulations).
file = character string specifying the path+filename of the external compiled
simulation code.
interface = optional character string specifying a temporary working path used
as interface with external codes. NOTE: All existing files in this directory are
deleted! If not given, the current working directory is used by default.
kind = optional number of bytes per floating-point number used in nbodyx out-
put files (has no bearing on computation accuracy)
gadget.np = number of processors used with GADGET-4 (defaults to 1, which
is normally best for small direct N-body runs)

measure.time logical flag that determines whether time computation time will be measured
and displayed.

verbose logical flag indicating whether to show console outputs from external codes.
Ignored when using the in-built simulator.

Details

UNITS: The initial conditions (in the sublist ics) can be provided in any units. The units of mass,
length and velocity then fix the other units. For instance, [unit of time in seconds] = [unit of length in
meters] / [unit of velocity in m/s]. E.g., if initial positions are given in units of 1AU=1.49598e11m
and velocities in units of 1km/s, one unit of time is 1.49598e8s=4.74yrs. Likewise, units of the
gravitational constant G are given via [unit of G in m^3*kg^(-1)*s^(-2)] = [unit of length in meters]
* [unit of velocity in m/s]^2 / [unit of mass in kg]. E.g., for length units of 1AU=1.49598e11m, ve-
locity units of 1km/s=1e3m/s and mass units of 1Msun=1.98847e30kg, a unit of G is 7.523272e-14
m^3*kg^(-1)*s^(-2). In these units the true value of G is about 887.154.

NBODYX simulator:
Can be downloaded from github via
git clone https://github.com/obreschkow/nbodyx
Details on installing, compiling and running the code are given in the README file.
Note: To run very high-accuracy simulations, such as the Pythagorean three-body problem, you can
use 128-bit floating-point numbers by compiling the code as
make kind=16

run.simulation 9

GADGET-4 simulator:
This his a very powerful N-body+SPH simulator used primarily for large astrophysical simula-
tions. GADGET-4 is not particularly suitable for small direct N-body problems, but it can nonethe-
less be used for such simulations for the sake of comparison, at least if not too much accuracy
is needed and if a massively increased computational overhead is acceptable. Please refer to
https://wwwmpa.mpa-garching.mpg.de/gadget4 for details on how to download and compile the
code. In order to use GADGET-4 with this R-package, it must be compiled with the following
compile-time options (in the file Config.sh):
NTYPES=2
GADGET2_HEADER
SELFGRAVITY
ALLOW_DIRECT_SUMMATION
HIERARCHICAL_GRAVITY
DOUBLEPRECISION=1
ENLARGE_DYNAMIC_RANGE_IN_TIME
If and only if periodic boundary conditions are used, you also need to add the option
PERIODIC
If you plan to often switch between runs with open and periodic boundaries, it may be advisable to
compile two versions of GADGET-4, with and without this option. To do so, one needs to create
two sub-directories with the respective Config.sh files and compile them via
make -j [number of cores] DIR=[path containing Config.sh with PERIODIC]
make -j [number of cores] DIR=[path containing Config.sh without PERIODIC]
The runtime parameter file (param.txt) needed by GADGET-4 is written automatically when calling
run.simulation. The gravitational softening length in GADGET-4 is computed as sim$para$rsmooth/2.8,
which ensures that the particles behave like point masses at separations beyond sim$para$rsmooth.
If rsmooth is not provided, it is computed as stats::sd(apply(simicsx,2,sd))*1e-5. The ac-
curacy parameter ErrTolIntAccuracy is set equal to sim$para$eta/sim$para$rsmooth*1e-3, which
gives roughly comparable accuracy to in-built simulator for the Leapfrog integrator.

Value

The routine returns the structured list of the input argument, with one sublist output added. This
sublist contains the items:

t k-vector with the simulation times of the k snapshots.

x k-by-N-by-3 array giving the 3D coordinates of the N particles in k snapshots.

v k-by-N-by-3 array giving the 3D velocities of the N particles in k snapshots.

n.snapshots total number of snapshots.

n.iterations total number of iterations used to run the simulation.

Author(s)

Danail Obreschkow

Examples

sim = setup.halley()
sim = run.simulation(sim)
AU = 149597870700 # Astronomical unit in meters

10 setup

plot(sim, units=AU, xlim=c(-20,60), ylim=c(-40,40), xlab='[AU]', ylab='[AU]')
cat(sprintf('This simulation was run with %d iterations.\n',sim$output$n.iterations))

setup Initialize N-body simulation

Description

Routines to generate the structured lists of initial conditions and simulation parameters required to
run an N-body simulation with run.simulation.

Usage

setup()

setup.halley(
t.max = NULL,
nperiods = 1,
dt.out = 1e+07,
e = 0.96714,
s = 2.667928e+12,
...

)

setup.sunearth(t.max = 31557600, dt.out = 86400 * 7, ...)

setup.ellipse(t.max = NULL, nperiods = 1, e = 0.9, s = 1, f = 0.5, ...)

setup.periodic.3body(
v1 = 0.347112813567242,
v2 = 0.532726851767674,
t.max = 6.325,
m3 = 1,
...

)

setup.pythagoras(t.max = 68, integrator = "yoshida6", eta = 0.002, ...)

Arguments

t.max final simulation time

nperiods number of orbital periods to be computed; ignored if t.max is specified.

dt.out time step for simulation output

e eccentricity in setup.ellipse()

s semi-major axis in setup.ellipse()

setup 11

... other simulation parameters used by run.simulation

f mass-ratio in setup.ellipse()

v1 first velocity parameter in setup.3body.periodic()

v2 second velocity parameter in setup.3body.periodic()

m3 mass of third body in setup.3body.periodic()

integrator integrator used for N-body simulation, see run.simulation for details.

eta accuracy parameter of adaptive time step, see run.simulation for details.

Value

Calling setup() is identical to calling setup.halley()

setup.halley() sets up a 2-body simulation of Halley’s Comet around the Sun.

setup.sunearth() sets up a simple 2-body simulation of the Earth around the Sun, using only
approximate orbital specifications.

setup.ellipse() sets up an elliptical Keplerian orbit in natural units

setup.periodic.3body() can be used to set up a planar zero angular momentum stable 3-body
problem with two unit masses and a third mass m3 (maybe equal of different from unity). Such
situations can be parameterized with two parameters v1 and v2, following the publications found at
https://arxiv.org/abs/1709.04775 and https://arxiv.org/abs/1705.00527.
The default is the famous figure-of-eight, but try, for example, setup.3body.periodic(0.2034916865234370,
0.5181128588867190, 32.850, dt.out=0.02), setup.3body.periodic(0.2009656237, 0.2431076328,
19.0134164290, 0.5, dt.out=0.01) or setup.3body.periodic(0.991198122, 0.711947212, 17.650780784,
4, eta=0.005, dt.out=0.002).

setup.pythagoras() sets up the Pythagorean three-body problem consisting of three unit masses
placed at the vertices of a right triangle with side lengths 3, 4 and 5. The masses are initially at rest
and the gravitational constant is unity.

Author(s)

Danail Obreschkow

Examples

sim = setup.halley()
sim = run.simulation(sim)
plot(sim)

Index

∗ N-body
run.simulation, 6

∗ datasets
.nbody.env, 2

∗ simulation
run.simulation, 6

.nbody.env, 2

default.code, 3, 3

energy, 3

nbody (nbody-package), 2
nbody-package, 2

plot, 5
plot.simulation, 4

reset.cm, 6
run.simulation, 3, 6, 10, 11

setup, 10

12

	nbody-package
	.nbody.env
	default.code
	energy
	plot.simulation
	reset.cm
	run.simulation
	setup
	Index

